Transformers and

sequence-to-sequence

learning

Guest Lecture, Fall 2021
Andrew Drozdov
College of Information and Computer Sciences
University of Massachusetts Amherst

Overview

- Background: Word Embeddings and Bi-RNNs (link)
- Word Embeddings: semantically rich and static.

Doesn't capture multiple word meanings well.
"bank"

- verb: put basketball in hoop
- noun: place to deposit money
- noun: a water structure

Overview

- Background: Word Embeddings and Bi-RNNs (link)
- Word Embeddings: semantically rich and static.
- Bi-RNNs: incorporates context and sequential.

Few had the impact of Sondheim, shaping modern musicals.

Overview

- Background: Word Embeddings and Bi-RNNs (link)
- Word Embeddings: semantically rich and static.
- Bi-RNNs: incorporates context and sequential.
- What about methods that are rich, contextual, and more flexible than sequential Bi-RNNs?

Today's lecture: Transformers
Running example: sequence-to-sequence learning

sequence-to-sequence learning

Used when inputs and outputs are both sequences of words (e.g., machine translation, summarization)

- we'll use French (f) to English (e) as a running example
- goal: given French sentence f with tokens f_{1}, f_{2}, $\ldots f_{n}$ produce English translation e with tokens $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots \mathrm{e}_{\mathrm{m}}$
- real goal: compute $\arg \max p(e \mid f)$

This is an instance of conditional language modeling

$$
\begin{aligned}
p(e \mid f) & =p\left(e_{1}, e_{2}, \ldots, e_{m} \mid f\right) \\
& =p\left(e_{1} \mid f\right) \cdot p\left(e_{2} \mid e_{1}, f\right) \cdot p\left(e_{3} \mid e_{2}, e_{1}, f\right) \cdot \ldots \\
& =\prod_{i=1}^{m} p\left(e_{i} \mid e_{1}, \ldots, e_{i-1}, f\right)
\end{aligned}
$$

Just like in LM, except we additionally
condition our prediction of the next word on some other input (here, the French sentence)

seq2seq models

- use two different neural networks to model

$$
\prod_{i=1}^{L} p\left(e_{i} \mid e_{1}, \ldots, e_{i-1}, f\right)
$$

- first we have the encoder, which encodes the French sentence f
- then, we have the decoder, which produces the English sentence e

Neural Machine Translation (NMT)

The sequence-to-sequence model
Encoding of the source sentence. Provides initial hidden state
for Decoder RNN.

NNy дəроэиヨ

les pauvres sont démunis

Source sentence (input)

Encoder RNN produces an encoding of the source sentence.

Neural Machine Translation (NMT)

The sequence-to-sequence model
Target sentence (output)

Training a Neural Machine Translation system

Improved Translation: Bi-RNN

Improved Translation: Attention

$$
\begin{aligned}
& \text { Le pauvres sont démunis } \\
& \tilde{h}_{i}=f\left(x_{i}, h_{i-1}\right) \\
& \alpha_{i, j}=\tilde{h}_{i}^{\top} h_{j} \\
& v_{i}=\Sigma_{j<i} \alpha_{i, j} h_{j} \\
& h_{i}=g\left(\tilde{h}_{i}, v_{i}\right)
\end{aligned}
$$

Sequence-to-Sequence w/ RNN

Train Time

Test Time

Encoder

- Runs iteratively, bi-directional.

Decoder

- Conditioned on full source + decoder history.
- Runs iteratively, left-to-right.
- Input is from "teacher forcing".
- Input is from "own predictions".

The "sequence-to-sequence" learning setup (or "encoder-decoder") is very natural for RNN.

How would this work with a transformer?

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar*
Google Research
nikip@google.com

Jakob Uszkoreit ${ }^{*}$
Google Research
usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* ${ }^{\dagger}$
University of Toronto
aidan@cs.toronto.edu

Lukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin ${ }^{*} \ddagger$
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the

Transformers (Vaswani et al., 2017)

- Paper Title: "Attention Is All You Need"
- What is attention?

Attention w/ RNN: Each word attends to words in its history. Self-attention: Each word attends to every other word.

- What do we not need? Recurrence
- How do we replace it? (Parikh et al., '16)

Next slide, computational complexity of attention... Then we'll get to transformers.

Review: Attention w/ RNN

Nobel committee awards Strickland who advanced optics
One word: $O\left(D^{2}\right)$

D - embedding dimension
L - sequence length
Matrix Vector Multiplication is $O\left(D^{2}\right)$, Vector Vector Multiplication is $O(D)$

Review: Attention w/ RNN

Nobel committee awards Strickland who advanced optics
One word: $O\left(D^{2}\right)$
One word + Attention: O(D²+LD)

D - embedding dimension
L - sequence length
Matrix Vector Multiplication is $O\left(D^{2}\right)$, Vector Vector Multiplication is $O(D)$

Review: Attention w/ RNN

Nobel committee awards Strickland who advanced optics
One word: O(D2)
One word + Attention: $O\left(D^{2}+L D\right)$
Full sentence + Attention: O(LD²+L²D)
D - embedding dimension
L - sequence length
Matrix Vector Multiplication is $O\left(D^{2}\right)$, Vector Vector Multiplication is $O(D)$

Self-Attention w/RNN

Nobel committee awards Strickland who advanced optics
One word: O(D²)
One word + Attention: O(D²+LD)
Full sentence + Attention: O(LD²+L2D)
D - embedding dimension
L - sequence length
Matrix Vector Multiplication is $O\left(D^{2}\right)$, Vector Vector Multiplication is $O(D)$

How to turn self-attention into a viable model? Transformers!

So far we've just talked about self-attention... what is all this other stuff?
encoder

[Vaswani et al. 2017]

Self-attention (in encoder)

Nobel committee awards Strickland who advanced optics

Self-attention (in encoder)

Nobel committee awards Strickland who advanced optics

Self-attention (in encoder)

Nobel committee awards Strickland who advanced optics

Self-attention (in encoder)

Nobel committee awards Strickland who advanced optics Self-attention (in encoder)

Nobel committee awards Strickland who advanced optics

Self-attention (in encoder)

Nobel committee awards Strickland who advanced optics

Self-attention (in encoder)

Nobel committee awards Strickland who advanced optics

Self-attention (in encoder)

Nobel committee awards Strickland who advanced optics

Multi-head self-attention

Nobel committee awards Strickland who advanced optics

Multi-head self-attention

Nobel committee awards Strickland who advanced optics

Slides by Emma Strubell!

Multi-head self-attention

\qquad

號 Layerp 0000 $p+1$

Nobel committee awards Strickland who advanced optics

Slides by Emma Strubell!

Multi-head self-attention

Nobel committee awards Strickland who advanced optics

Multi-head self-attention

Position embeddings are added to each word embedding. Otherwise, since we have no recurrence, our model is unaware of the position of a word in the sequence!

Output
Probabilities

Softmax
Residual connections, which mean that we add the input to a particular block to its
output, help improve gradient flow

Output
Probabilities

Transformers use layernorm, which is an alternative to batchnorm and is often helpful for dynamically size input, like text.

Output
Probabilities
Stack as many of these Transformer blocks on top of each other as you
 can (bigger models are generally better given enough data!)

Output
Probabilities

Masked Self-Attention

<START> Nobel committee awards Strickland who advanced
awards 1[1/1/1|0|0]0

$$
h_{i}^{p}=\sum_{j} \alpha_{i, j}^{p} h_{j}^{p-1}
$$

Masked Self-Attention

<START> Nobel committee awards Strickland who advanced

$$
h_{i}^{p}=\sum_{j} \alpha_{i, j}^{p} h_{j}^{p-1}
$$

Masked Self-Attention

<START> Nobel committee awards Strickland who advanced

Output
Now, we have cross attention, which connects the decoder to the encoder by enabling it to attend over the encoder's final hidden states.

After stacking a bunch of these decoder blocks, we finally have our familiar Softmax layer to predict the next English word

Sequence-to-Sequence w/ Transformers RNNs

Train Time

Test Time

Encoder

- Runs parallel iteratively, joint bi directionat.

Decoder

- Conditioned on full source + decoder history.
- Runs parallel iteratively, left-toright.
- Input is from "teacher forcing".
- Runs iteratively, left-to-right.
- Input is from "own predictions".

Don't forget, transformers require some tricks...

Positional encoding

Creating positional encodings?

- We could just concatenate a fixed value to each time step (e.g., 1, 2, 3, .. 1000) that corresponds to its position, but then what happens if we get a sequence with 5000 words at test time?
- We want something that can generalize to arbitrary sequence lengths. We also may want to make attending to relative positions (e.g., tokens in a local window to the current token) easier.
- Distance between two positions should be consistent with variable-length inputs

Intuitive example

$0:$	0	0	0	0		$8:$	1	0	0	0
$1:$	0	0	0	1		$9:$	1	0	0	1
$2:$	0	0	1	0		$10:$	1	0	1	0
$3:$	0	0	1	1		$11:$	1	0	1	1
$4:$	0	1	0	0		$12:$	1	1	0	0
$5:$	0	1	0	1		$13:$	1	1	0	1
$6:$	0	1	1	0		$14:$	1	1	1	0
$7:$	0	1	1	1		$15:$	1	1	1	1

Transformer positional encoding

$$
\begin{gathered}
P E_{(p o s, 2 i)}=\sin \left(\frac{p o s}{10000^{2 i / d_{\text {model }}}}\right) \\
P E_{(p o s, 2 i+1)}=\cos \left(\frac{p o s}{10000^{2 i / d_{\text {model }}}}\right)
\end{gathered}
$$

Positional encoding is a 512d vector
$i=$ a particular dimension of this vector
pos = dimension of the word
d_model = 512

What does this look like?

 (each row is the pos. emb. of a 50-word sentence)

Despite the intuitive flaws, many models these days use learned positional embeddings (i.e., they cannot generalize to longer sequences, but this isn't a big deal for their use cases)

How to train transformers?

- Language Model: GPT (Summer 2018)

Few had the impact of Sondheim, shaping modern musicals.

Few had the impact of Sondheim

How to train transformers?

- Language Model: GPT (Summer 2018)
- Masked Language Model: BERT (Fall 2018)

For 15\% of words, mask 80% of the time, swap 10% of the time, leave 10% of the time.

Few had the impact of Sondheim, shaping modern musicals.
ocean had the [MASK] of Sondheim, shaping [MASK] musicals.

How to train transformers?

- Language Model: GPT (Summer 2018)
- Masked Language Model: BERT (Fall 2018)
- Autoregressive MLM: BART (Fa 2019), MASS (Su '19)

How to train transformers?

- Language Model: GPT (Su '18)
- Masked Language Model: BERT (Fa '18)
- Autoregressive MLM: BART (Fa '19), MASS (Su '19)
- Sentinel Autoregressive MLM: T5 (Fa '19)

```
Original text
Thank you for inviting me to your party last week.
Inputs
Thank you < X> me to your party <Y> week.
Targets
<X> for inviting <Y> last <Z>
```


Other tricks...

Label Smoothing

During training, we employed label smoothing of value $\epsilon_{l s}=0.1$ (cite). This hurts perplexity, as the model learns to be more unsure, but improves accuracy and BLEU score.

We implement label smoothing using the KL div loss. Instead of using a one-hot target distribution, we create a distribution that has confidence of the correct word and the rest of the smoothing mass distributed throughout the vocabulary.

I went to class and took

cats

notes
took
sofa

$\begin{array}{lllll}0.025 & 0.025 & 0.9 & 0.025 & 0.025\end{array}$
with label smoothing

Get penalized for overconfidence!

https://nlp.seas.harvard.edu/2018/04/03/attention.html

And more details...

- Tokenization (i.e. subwords) - Out of scope.
- Beam Search - It's hard to do inference.
- Model Averaging - Easy way to ensemble seq2seq.

Why these decisions?

Unsatisfying answer: they empirically worked well. Neural architecture search finds even better Transformer variants:

Squared ReLU in Feed Forward Block

Primer: Searching for efficient Transformer architectures... So et al., Sep. 2021

